Print Page   |   Contact Us   |   Sign In   |   Register
Community Search
Latest News

The materials and information included in this Latest News page are provided as a service to you and do not reflect endorsement by the American Honey Producers Association (AHPA). The content and opinions expressed within the page are those of the authors and are not necessarily shared by AHPA. AHPA is not responsible for the accuracy of information provided from outside sources.

  

Slugs Are Eating America's Farms

By Nsikan Akpan 1/24/15 at 2:29 PM

“If you went and looked at the right time of day, the whole farm would be silvery with slime.”

That’s how pest consultant Gerard Troisi describes the slug dilemma in Lewisburg, Pennsylvania. Outbreaks of the snotty pest are troubling the state’s soybean farms, and it seems as if Troisi’s phone buzzes more frequently each spring, as people seek his expertise. This year, he might add a new recommendation: fewer neonics.

Neonics—or neonicotinoids—are a popular type of neurotoxic insecticide, and a recently published report shows that slugs can consume the compounds and survive. The slimeballs then act as a poisoned meal for predatory ground beetles, which typically keep the slugs and other farm pests in check. After the poisoned beetles perish, the slugs that didn’t get eaten run amok and damage farms. It’s the first evidence that neonics travel via the food chain, from one animal to the next.

Neonics cover about half of America’s soybean seeds and 95 percent of corn seeds, the two biggest cash crops for commercial farms in the country. They are designed to ward off seed-munching insects, and in theory, shouldn’t bother carnivores like predatory ground beetles, which eat slugs or other bugs. But in recent years the compounds have been found to have some unintended environmental effects. In 2013, Europe suspended neonic use for two years after the pesticide was linked to the die-offs of honeybees, vital crop pollinators. Though they are still in use in the States, the U.S. Environmental Protection Agency concluded this past October that “these seed treatments provide little or no overall benefits to soybean production in most situations.”

“One of my main concerns with neonics is that they’ve been used regardless of need,” says insect ecologist John Tooker of Pennsylvania State University, who co-authored the study published in December 2014 in the Journal of Applied Ecology.

His co-author, ecologist Maggie Douglas, says their discovery was a bit of an accident. Three years ago, Douglas was in a lab studying which beetle species are the best natural predators for slugs. She borrowed a few soybeans from a colleague as slug food, not knowing that they were precoated with the neonic thiamethoxam. “When I came back the next day, most of the ground beetles in the soil plots had died,” says Douglas. When they moved the experiment outdoors and into crop fields, they found that neonic-fed slugs killed 31 percent of nearby beetle predators during the first month of the farm season. With beetles out of the way, the slugs multiplied. And when the slug population exploded, the farms fell apart: Soybean densities dropped by 20 percent, and crop yields overall fell 5 percent.

Douglas conducted the tests on no-tillage farms, a brand of sustainable agriculture that’s expanding in the U.S. If you’ve ever seen a tractor plow a field with a row of rotating blades, that’s tillage. The process aerates the soil and rips up weeds, but also releases carbon into the atmosphere and causes erosion that washes agrochemical runoff into water supplies. A nationwide push has steadily removed tillage practices since 2000, especially in mid-Atlantic states in order to preserve the water quality of the Chesapeake Bay. No-till farms now account for over a third of U.S. crops (and 58 percent of Pennsylvania’s).

No tillage creates a lot of leftover crop material, “which is fantastic for field production and good healthy soils. But one trade-off is that it leaves great food for slugs,” says ecologist Andy Michel, an assistant professor at Ohio State University. Meanwhile, a warmer and wetter climate over the past few years in Pennsylvania has compounded the issue—slugs love moist weather.

Yet the influence of neonics isn’t confined to commercial farms. The compounds can wash into general water supplies: “As little as 2 percent of the active compound [in neonics] is taken up by the plant,” says Jonathan Lundgren of the U.S. Department of Agriculture. “The rest resides in the soil or washes into waterways.”

Neonics are tough to remove from the environment, sticking in the soil for up to six years. They’re also the millennials of the agrochemical world, with most being patented in the mid-1980s and early 1990s. When given jobs, the compounds squelch insect pest outbreaks, but as new arrivals, their societal influence remains undefined.

The extent of the human repercussions of neonic spread remains controversial. Farmers briefly exposed to high doses of imidacloprid, a neonic as well as the most popular pesticide in the world, can experience acute illness like dizziness or vomiting, but neonic levels in drinking water and food produce are much lower. However, long-term studies on human health haven’t been conducted.

Based on animal studies, neonics don’t cause cancer, but some do carry a slight risk of adversely affecting the development of neurons and brain structures. On the latter point, European and the U.S. official split opinion. In 2013, the European Food Safety Authority issued a human health warning for two neonics—acetamiprid and imidacloprid—citing a risk of harming child neurodevelopment, but the U.S. Environmental Protection Agency (EPA) countered that the “recommendations would not impact the agency’s current regulatory positions on these chemicals.”

Plus if slugs can ingest and pass neonics to predatory ground beetles, other organisms might tolerate the insecticides too and transmit them through the food chain. Over the course of her research, Douglas also detected neonics in earthworms, important food for birds and other animals. Last July, neonics were tied to declining bird populations in the Netherlands.

So what’s the remedy? Neonics are pervasive, and no-till in America is here to stay. One solution might be to douse the fields with metaldehyde, our one and only anti-slug chemical. But that carries its own risks. Metaldehyde is toxic for wildlife and domestic pets if consumed in large doses, plus impossible to remove if it rinses into waterways.

Jonathan Lundgren, a research entomologist at the U.S. Department of Agriculture, argues that the solution is to rely less on chemicals like neonics and more on natural competition between pests and predators. One way to encourage competition is through wider use of cover crops, which farmers plant to maintain soil quality rather than harvest for profit. When planted earlier in the season, cover crops add green matter to the field, says Troisi, which can serve as an alternative food source for slugs so they don’t attack soybeans. Cover crops also provide a habitat for slug’s natural enemies like ground beetles or nematodes, which could boost their numbers and serve as a form of biocontrol.

It could save our crops, our planet and us. “We need biodiversity. For every pest insect species out there, there are 1,700 species of insects that are beneficial,” says Lundgren. Besides pollination, these bugs can bolster farm soil, improve the taste of beer and feed animals, like fish, that in turn feed us. In the end, says Lundgren, “we cannot live without these beneficial insects. Human society would grind to a halt.

 

More Beekeepers Sour on Profession as Winter Die-Offs Continue

Rising Cost of Doing Business Takes Toll on Industry That Pollinates $15 Billion of Crops

By Tennille Tracy

Jan. 23, 2015 6:56 p.m. ET

Orin Johnson, a second-generation beekeeper in California, has started to consider a life without his 500 colonies of honey bees.

At 67, he doesn’t work as fast as he once did, and yet his bees require greater amounts of time and money to maintain. A near constant barrage of threats, from pesticides to parasites, wiped out more than half of Mr. Johnson’s colonies last year.

“The costs are just getting out of hand,” he said. “I’m getting tired of it.”

Plenty of Mr. Johnson’s colleagues are in the same boat. Increasing numbers of beekeepers, who are generally in their 50s and 60s, are considering early retirement or are being forced out of business as honey bees continue to die at alarming rates.

For nearly a decade, beekeepers have been losing roughly 30% of their bees each winter, above the 19% depletion rate they say is sustainable, according to the Bee Informed Partnership, a group funded by the Agriculture Department to study bee health. While beekeepers can replenish their colonies by splitting and repopulating healthy hives, it is hard for them to recoup the costs of doing so.

“We’re not worried about the bees going extinct,” said Dennis vanEngelsdorp, a bee researcher at the University of Maryland. “We’re worried about the beekeepers going extinct.”

The government doesn’t track employment statistics on commercial beekeepers, but the White House cited particular concern over the fate of professional beekeepers when it created a task force in June to address bee deaths.

Tim Tucker, president of the American Beekeeping Federation and a beekeeper in Kansas, said the number of professional beekeepers on its membership roster has fallen by at least half in the last two decades.

A dwindling supply of beekeepers is troubling for U.S. agriculture. Honey bees pollinate more than $15 billion of crops each year, including almonds, apples and cherries, and are responsible for pollinating one-third of the American diet. Without enough beekeepers, U.S. crop production could slow, forcing consumers to pay more for their food or rely more heavily on imported items.

Almond growers, who rely almost exclusively on honey bees for pollination, have seen the price of bee rentals increase 30% since 2006. Paramount Farms in California, one of the country’s largest almond growers, has started to look for beekeeping operations it can own independently to ensure a steady supply of pollinators as times get tougher for beekeepers.

The honey bee crisis dates back to at least 2006, when beekeepers first reported a troubling phenomenon known as colony collapse disorder. Adult bees were simply vanishing from their hives, leaving behind the younger bees, the queen and the honey.

There are now about 2.5 million honey-producing colonies, according to the Agriculture Department. That is about flat from 15 years ago, but masks the fact that the total number of large commercial beekeepers has fallen by at least several hundred, while the number of small hobbyists has grown, Mr. Tucker said. The colony total is down from 6 million in the 1940s.

There are signs this winter will bring more hefty losses, Mr. Tucker said. He lost nearly 40% of his colonies between September and November.

It is still unclear what is killing the bees. Scientists blame a combination of parasites, pesticides and poor nutrition, among other factors, but haven’t determined a single cause.

The Varroa mite, a blood-sucking parasite that weakens bees and brings diseases into the hive, is a common culprit. At the Department of Agriculture’s bee laboratory in Beltsville, Md., scientists routinely dissect and inspect dead bees, sent to them by beekeepers nationwide, looking for signs of the mite.

“If we could remove the Varroa mite from the equation, we’d be back at a sustainable level of loss,” said Jay Evans, a research entomologist at the Agriculture Department.

With so many potential threats to their bees, veteran beekeepers say their job has gotten increasingly expensive and complex.

The annual cost of maintaining a hive has quadrupled in the last 15 years, Mr. Tucker said. It now costs about $230,000 a year for a professional beekeeper running a modest 2,000 hives. Expensive items include mite treatments and protein supplements that support the bees’ diet as natural forage options dwindle.

Jim Doan, a third-generation beekeeper in New York state, was forced to sell his 112-acre farm in 2013, after losing most of his bees several years in a row. He tried to bounce back, buying new hives and diligently trying to ward off pests and disease, but nothing worked. Mr. Doan blames pesticides for the death of his bees. “I love the bee business, but I don’t see a future in the bee business,” he said.

For now, beekeepers say they are being kept afloat by high honey prices, which reached a record $2.12 a pound in 2013, according to the most recent government data, and the lucrative pollination fees they receive from farmers.

Write to Tennille Tracy at tennille.tracy@wsj.com

 

Manage ‘Good’ Insects Like Your Farm Depends On It

By John Dobberstein posted on January 9, 2015 | Posted in Crop Protection

No-till practices and diverse cover-crop mixes are like a beacon to beneficial insect communities that pollinate crops, munch on weed seeds and kill yield-robbing crop pests — all to your benefit.

For every yield-robbing pest no-tillers know of in a field, there are 1,700 insect species that are beneficial or neutral to their farm.

On every farm, insects form the basis of complex food webs and provide services to farmers. Insects feed wildlife. Others like dung beetles return nutrients to the soil, and still more regulate herbivores or shape the dispersion and density of plant communities.

Jonathan Lundgren, a research entomologist for the USDA-Agricultural Research Service, says farmer decisions about managing pests shouldn’t come at the expense of “friendlies” in cropland, since they save farmers billions of dollars each year by killing crop pests, eating weed seeds and pollinating crops.

“We can’t live without them,” says Lundgren, who works at the North Central Agricultural Research Laboratory in Brookings, S.D. “And you can use these insects as tools.”

Welcome the Predators

One major role that beneficial insect communities play is as predators of harmful crop pests, such as corn rootworms and aphids.

In the “South Dakota Corn Insect Survey” project completed in 2010 and 2011, USDA and South Dakota State University researchers searched through 53 different fields across eastern South Dakota where non-Bt corn was growing and found more than 91 species of insects in untreated fields. A few were harmful crop pests, but 93% of species were not and 87% of the insects weren’t even herbivores.

“These were just insects found in the crop canopy,” Lundgren says. Some 7% were primary pests, although they weren’t present at economically damaging levels, and 13% had some impact on corn. The researchers found about 4½ predators per plant in 2010 and 5.3 predators per plant in 2011 — which equates to 137,000-161,000 predators per acre in the corn canopy.

More predators were found in the soil. In one cornfield alone, researchers found 63 predator species in soil cores, 86 predator species on the soil surface and 85 predator species in pitfall traps.

“What are they doing out there? A lot of them are predators and they’re giving you free services that are hard to put an economic value on,” Lundgren says. “Killing these insects costs you money.”

Lundgren says farm machinery and chemicals are the primary ways beneficial insects are killed, through trauma or elimination of vegetation from the landscape other than crops. This has an impact on environmental diversity of insect communities that manages pests in crops.

Lundgren notes that a lot of key pests in agriculture — such as corn rootworms and weed seeds — have life stages that are associated with the soil. Although millions of dollars of research has been directed at eradicating corn rootworms, for example, Lundgren believes resurgence is likely given this pest’s history.

“The primary response has been to throw insecticides, simplified crop rotations, Bt traits or seed treatments at them. But history teaches us this pest always figures out a way around what we’re throwing at it,” Lundgren says.

He notes that immature rootworms often experience 95-99% mortality in the soil, but there has been very little “consistent and directed” research focusing on what organisms (diseases and predators) kill rootworms.

“Almost all the eggs die in soil, but it doesn’t take many larvae to hurt the corn plant. Yet we don’t know what’s causing all that mortality. Predators kill a lot of these rootworms, and we’ve got the data to show it,” Lundgren says.

A few years ago, Lundgren’s group conducted research on the predators affecting corn rootworms, analyzing the stomachs of thousands of predators for corn rootworm DNA. To do this, researchers had to figure out when rootworm eggs and larvae were present in the soil, and which predators bumped into them during those periods of the growing season.

At test sites in Brookings and Pierre, S.D., they found 11-19% of the predators tested positive for the DNA, and dozens of predator species tested positive.

While this may not seem like much predation, he notes that as soon as the organism eats the pest it begins to digest the DNA, so the DNA is only detectable for a few hours. And also consider, he says, there are millions or even billions of predators that can be found in one acre of farmland.

“So 11% of billions of predators that ate rootworms in the last few hours before being collected means there is a lot of predation going on,” he says.

Lundgren also notes there is a seasonal asynchrony of predators within the insect community. For example, as the life stage of rootworms changes in a given field, the predator community also changes. And only some predators will eat a target pest.

“These predators will manage our insect pests and weed seeds — when we allow them to,” Lundgren says. “But there isn’t just a single smoking gun. It’s a whole community and it’s very dynamic. There are even changes in activity cycles in a 24-hour period, because some only walk around in a 3-hour period at the end of the day.”

Cover Crops Key

When it comes to building diverse insect communities that can assist in managing yield-robbing pests in farm fields, no-till systems are necessary, “but it’s not enough,” Lundgren says.

Eliminating tillage serves an important function in preserving soil biology and reducing the destruction of insects and their habitats. To illustrate the importance of this, Lundgren notes an experiment several years ago where researchers tried to infest a field at the Dakota Lakes Research Farm in South Dakota with corn rootworm eggs, at a rate of 1,000 per row foot.

Almost none of them survived, he says, purportedly due to the long-term no-tilled environment and thriving insect community.

“Just like with no-till, the benefits of insect communities accrue over time,” he says. “After tillage, things will come back, but it’s usually in response to pests going crazy. And the community won’t be as good, or as stable, as one built up over the years.”

No-till crop residue is also important because it brings in insects that serve as beneficial food for desirable predators.

But seeding cover crops can bring a major boost for beneficial insect communities, Lundgren says. He pointed to a 3-year study that found a winter cover crop (slender wheatgrass) increased the number of predators so dramatically that there were few corn rootworms left in fields to eat the roots of corn seedlings when they sprouted.

“Cover crops link the growing seasons, so that you have vegetation and habitat for predator communities,” he says. “Predators are there in spring when the pests arrive, and cover crops also provide habitat for alternative foods like fungi, pollen and vegetation. Covers feed the predators and sustain them much more than bare soil.”

Studies in 2010 and 2011 in South Dakota cornfields showed a significantly higher presence of predator insects in fields with cover crops when compared to bare soil. He’s also noted through research that predation of rootworm larvae is strongly correlated with reduced root damage ratings in corn.

Lundgren says cover crops interact with predators and make them more effective in two ways: More predators live in cover-cropped fields, and covers also change corn roots structurally.

“What we think is happening is the cover crops change corn roots, which is forcing the older rootworm larvae out of the corn roots,” he says. “When they move out of the root, the predator communities that cover crops promote are waiting for them. As predation increases, root damage diminishes.”

So which cover-crop species are best for predators of rootworm larvae or killing other crop pests?

“We don’t have an answer to that yet,” Lundgren says. “Until more directed research is conducted, I advise that some vegetative diversity is better than none, and more diversity is better than less. And the predator community is more diverse with diverse cover crops. Cover-crop cocktails can increase the number of predator functions performed if you have more species in them.”

Weed Seed Buffet

The predation effect with beneficial insects also holds true with weed seeds — which is key with herbicide resistance, a major concern in the U.S. with glyphosate losing its effectiveness on many farms.

Previous research shows up to 162,000 weed seeds can be found per square meter of a farm field. And insects actually shape when and where weeds happen in farmland, Lundgren says.

“Insects eat weed seeds. Approximately 10% of seeds that fall onto the ground are eaten per day, and these seeds determine what future weed communities look like in a field,” he says.

There are hundreds of species of ground beetles, crickets, ants and other insects that eat weed seeds at a rapid rate, and many of them are almost the same exact community that deals with corn rootworm larvae, he says. And for predators, the seeds typically are a better source of calories, protein, lipids and carbohydrates than prey.

“You can look inside stomachs of seed predators and see which ones are eating the focal seed,” he says. “We mark seeds with a protein that doesn’t occur in the environment, disseminate the seeds into a habitat, and then collect insects and remove their stomachs. Using a biochemistry assay, we can see which predator has eaten a particular weed seed.”

USDA researchers have been testing this method with dandelions, which can be a major pest in no-till fields. A granivore community that is well described in Europe — but unknown in the U.S. — eats dandelion weed seeds.

Some 1,800 specimens from 65 taxa were analyzed recently in the U.S. and researchers found 22% of them ate dandelion seeds. The usual suspects were carabid beetles (up to 34% positive), ants (12% positive) and crickets (47% positive). But they also found isopods, millipedes, caterpillars and weevils ate the seeds, too.

A key term here is “trophic interaction” — how much a particular food that insects gravitate to and eat. The top 5 most frequent consumers of weed seeds are millipedes, small crickets, isopods, field crickets and carabid beetles.

But not all species have an equal effect on all weeds. Lundgren’s studies of field crickets (Gryllus pennsylvanicus) showed that they prefer crabgrass seed to foxtail, lambsquarters, pigweed, alfalfa, morningglory or velvetleaf seed. In contrast, the carabid beetle, Harpalus pensylvanicus prefer to eat lambsquarters and pigweed seeds than the other weed species.

These interactions are often based on seed nutrition, defense, size and structure.

It’s difficult to say what species of insects are best at controlling the seed bank, but it’s best for no-tillers to create an environment where many different insect species can exist, Lundgren says. Seed predation alone probably isn’t enough to eliminate herbicide applications, but combining beneficial insects with diverse cover crops and crop rotations could possibly accomplish such a goal.

“We don’t always understand how these species interact, but we need to get out of the way and let them do their jobs, rather than trying to manage them all the time,” Lundgren says.

Pollinators Crucial

While much industry attention is devoted to helping farmers eradicate insect pests deemed harmful to U.S. crops, it’s easily forgotten that many insects play a crucial role in pollinating crops.

Long-horned bees (genus Melissodes) thrive in cropland, and numerous other species of butterflies and small flies can have a direct impact on the pollination of soybeans, sunflowers, canola and other crops that flower. One testament to the diversity of pollinators in any given field was illustrated in a project undertaken at the USDA-ARS research fields in Brookings, S.D.

USDA researchers in South Dakota and Minnesota used pan traps to collect pollinators from several plots in a single study year. During the season, they collected 2,170 syrphid flies, bees, wasps and butterflies totaling some 114 species.

Lundgren says there are two problems currently facing pollinators, especially in the Dakotas: A lack of food resources and diversity, and risks posed by pest management practices.

In order to stabilize or increase the amount of pollinators, no-tillers should take a hard look at insecticide use on their farm and determine if it’s needed.

“Prophylactic use of insecticides as an ‘insurance policy’ often does more harm than good for the farmer, and unnecessarily costs them money,” Lundgren says. “Farmers should know whether they have a pest problem before they use products like insecticidal seed treatments or foliar applications.

“It is a bad business decision to kill off all the insects in your fields.”

In South Dakota and Minnesota, researchers are trying to accommodate pollinators by studying the feasibility of adding flowering oilseed crops to rotations, such as sunflowers, spring canola, echium, flax, spring camelina, calendula, crambe or cuphea.

“Part of the goal of this work is to figure out what species work agronomically, and what species work as a pollinator conservation tool,” Lundgren says.

“The nice thing about these crops is that bees love them, and you can select crops that flower at different times of the year so there are floral resources for the bees. And you can do that while taking the crops off,” Lundgren says.

Oils from these seeds are used for cosmetics, food and biofuels. Some of them have markets already, and some are just developing, he says.

Lundgren says the benefits of oilseed crops can have a spillover effect into adjacent corn or soybean crops as well. For example, some lady beetles consuming aphids or nectar in the oilseed crops could move into soybean crops and eat crop pests.

“And there are some documented yield bumps in soybeans due to pollinators living next door,” he says.

Big Tent Approach

No-tillers often gauge the health of their soils by counting the number of earthworms in a shovelful of soil, perhaps comparing that to when they began no-tilling years earlier.

In the case of insect communities, no-tillers may be tempted to ask what specific species of insects they should try to attract, or how they can benchmark the quality of their farm’s insect community.

That’s not an easy task, Lundgren says, because food webs in the crop canopy, soil surface and underground are too complex and numerous.

“We’ve been trying to identify some indicator species, but it’s not been a simple thing,” he says. “But if you look at how pests interact in a natural environment like a pasture or prairie, you can understand why you seldom see pests in those areas.

“If we change our cropping systems, reduce soil disturbance, reduce pesticide use to when it’s needed, or when a problem exists, and add cover crops and diverse rotations, those can be used to mimic aspects of natural systems.

“If you manage for diversity, all of the jobs in the food web will be taken care of.”

- See more at: http://www.no-tillfarmer.com/articles/4270-manage-good-insects-like-your-farm-depends-on-it#sthash.kPNWfweR.dpuf

 

Food Detectives on a Tough Case

A Lab Is Trying to Keep China From Dodging U.S. Tariffs on Honey

By PETER ANDREY SMITH
JAN. 19, 2015

SAVANNAH, Ga. — Behind the immaculate gray walls of the Customs and Border Protection’s laboratory here stands a cabinet containing three plastic vials filled with a sticky, yellowish substance. Honey, or so an importer has claimed.

The lab’s task: Determine whether the samples are adulterated with sweeteners or syrups, and, if they really are mostly honey, figure out where it originated. If the honey comes from China, often the case, the entire shipment from which the samples came may be subject to additional taxes.

The chemists here regularly test a wide range of imported goods, but they specialize in analyzing agricultural imports. With remarkable precision, these scientists can tell you where the peanuts in your peanut butter came from and where the mangoes in your jam were grown.

But honey, No. 0409 on the 2015 Harmonized Tariff Schedule, has been a focal point for the lab and the source of a long-running international food scam that has challenged even the existing forensic technology.

Americans consume an average of 1.4 pounds of honey a year, about three and a half six-ounce bottles. Some 70 percent of it is imported. In 2001, the Commerce Department enacted a stiff tariff on Chinese honey, nearly tripling the import duty, after American producers complained that Chinese competitors were dumping their products on the market.

Then, honey imports from other countries spiked, including from nations not known for large bee populations. According to the American Honey Producers Association, Malaysian beekeepers, for example, have the capacity to make about 45,000 pounds of honey annually, but the country has exported as much as 37 million pounds of honey to the United States in a year.

As it turned out, Chinese honey was being shipped through ports such as Shanghai, or Busan, South Korea, and slapped with labels from other nations to skirt American duties. The practice is known as transshipment, or “honey laundering.” Some of it was not even real honey, but a mix that included corn and rice sweeteners.

In an effort to stanch the flow of illicit honey, chemists at the lab here have tested thousands of samples pulled from barrels and containers at ports across the Southeast. In 2008, the lab demonstrated with about 90 percent accuracy that honey imported from Thailand, the Philippines and Russia had originated in China.

The evidence helped federal prosecutors build a case against two large American importers who were suspected of buying illegal Chinese honey to avoid more than $180 million in duties.

But this kind of detective work is daunting. At the C.B.P. lab, the analytic work takes place inside what’s known as the “country of origin” room. Inside are standing metal shelves filled with bags and plastic totes of imported honey, along with peanuts, shrimp, garlic, mangoes and other foods.

On a recent Tuesday, Robert Redmond and Christopher Kana, two of the lab’s analytic chemists, took a small honey sample and added an acid to digest it. The result looked like muddy water.

In recent years, scientists have demonstrated that subtle chemical variations in many foods, including honey — undetectable to the tongue or the naked eye — can give a strong indication of where it originated. The C.B.P.’s analytic work depends, in part, on these naturally occurring geographic “tracers.”

Once a sample is diluted, the liquid is pumped into a device called a mass spectrometer that is about the size of an office copier. Inside, a nebulizer turns the sample into a fine mist over heated argon, a process that yields a distinct signature of trace elements.

The spectrometer can measure chromium, iron, copper and other elements to several parts per quadrillion. Each combination of trace metals reflects the composition of certain soils: The elements were taken up by flowering plants and then foraged by bees.

Soils vary from region to region, and by statistically comparing the presence of some 40 different elements to a reference database collected by C.B.P. attachés and employees, the scientists can ascertain the probable origins of many samples.

In late 2012, Mr. Redmond traveled to Taiwan and India to collect and test honey. His findings were then added to the database, and now lab chemists can compare honey arriving in the United States and said to be from those countries.

But it’s only the latest maneuver in a scientific cat-and-mouse game that has stretched on for years.

At first, the detection of transshipped honey relied on a simple test for an unapproved antibiotic, chloramphenicol, discovered in Chinese honey. Carson Watts, former director of the C.B.P. lab in Savannah, said, “Very shortly after word got out that we were using chloramphenicol to identify Chinese honey, they stopped using it.”

Around 2006, unscrupulous importers appeared to be cutting honey with high-fructose rice syrup or disguising cheap, pure honey as an artificial blend. (At the time, the import duty applied to artificial blends that were more than 50 percent honey by weight.)

The problem? Reliably determining the ratio of rice syrup to honey is nearly impossible.

“An importer could present goods to Customs and say, ‘This is 90 percent rice syrup, 10 percent honey,’ and Customs really has no way of knowing,” said Michael J. Coursey, a lawyer in Washington who has represented American honey producers.

He added, “For two or three years, C.B.P. was pretty much the Dutch boy with its finger in the dike.”

In 2011, the government accused three companies of importing millions of dollars’ worth of rice fructose blend that in fact was mostly taxable honey. The importers said the product was less than 50 percent honey.

The scientists at the Savannah lab swung into action, producing evidence that pollen abundance in the blends showed the substance to be mostly honey. But defense lawyers challenged the research on scientific grounds.

“It’s all well and good to say you need to enforce these regulations,” said Dana Krueger, who owns an independent laboratory in Chelmsford, Mass., and testified as a defense witness. “But if there’s no technology, it puts Customs in a difficult position.” 

The judge dismissed the case, and the government dropped the charges.

The most sophisticated chemical analysis may have its limits. But for the moment, the food detectives are undeterred.

“If it’s honey from Malaysia, then we’re testing for China,” Mr. Redmond said.  

2015 Annual AHPA Convention and Trade Show

The annual convention and trade show in Manhattan Beach, California was a huge success! We had a record breaking auction this year thanks to our contributing members and auctioneer.

Special thank you to our speakers who were very informative with up to date information and research. Thank you also to our vendors that bring us the latest products and information.

Many thanks to the staff at the Manhattan Beach Marriott and all those who helped with the convention: Randy, Roberta, Rochelle, and Rebekah Verhoek, Michelle Spuhler, Darla Adee, Mark and Carrie Jensen, Lee Knight, Veldon Sorensen, Grace Sanroma, Darren and Cassie Cox.

 

2015 AHPA Officers and Executive Board Members

President: Darren Cox
Vice President: Kelvin Adee
Treasurer: Doug Hauke
Executive Secretary: Cassie Cox
Executive Board:
     Joe Sanroma
     Steven Coy
     Ryan Cosyns
     Chris Hiatt
Past President: Randy Verhoek

 

2015 Beekeeper of the Year
The Haff Family: Ken, Cyndy, and Beth

Pictured: Randy Verhoek, Ken Haff, Beth Haff

 

 

 

 

 

2015 Friend of the Industry
Dr. Jeff Pettis

Pictured: Randy Verhoek, Dr. Jeff Pettis

 

 

 

 

 

 

2015 Bee Charmer Award
Steve Park

   

 

Pollinator Health Task Force; Notice of Public Meeting

876 Comments Received

Docket ID: EPA-HQ-OPP-2014-0806

Agency: Environmental Protection Agency (EPA)

Summary: As part of the U.S. Government’s efforts to promote the health of honey bees and other pollinators, the Pollinator Health Task Force is soliciting stakeholder input on best management practices, public private partnerships, research, education opportunities, pollinator habitat improvements, and other actions that the Task Force should consider in developing a federal strategy to reverse pollinator losses and help restore populations to healthy levels.

http://www.regulations.gov/#!docketDetail;dct=FR+PR+N+O+SR;rpp=10;po=0;D=EPA-HQ-OPP-2014-0806

Docket Folder Summary View all documents and comments in this Docket

    

For Immediate Release                                                                                              

 

 

National Honey Board

11409 Business Park Circle, Ste. 210

Contact: Jessica Schindler                                                                                            Firestone, CO 80504

Jessica@nhb.org  
Phone: (303) 776-2337

Toll Free: (800) 553-7162

Fax: (303) 776-1177

www.honey.com

 

National Honey Board Announces New Chief Executive Officer

 

Firestone, Colo., January 15, 2015 – The National Honey Board (NHB), an industry-funded agriculture promotion group, announced that the Board has unanimously selected Margaret Lombard as Chief Executive Officer (CEO) effective December 29, 2014. Lombard succeeds the NHB’s past CEO Bruce Boynton who announced his desire to retire in early 2014 after almost 26 years of service to the honey industry.

 

“After a thorough selection process, the Board is delighted to announce Margaret will lead the NHB as we navigate through the evolving and expanding landscape of the honey industry,” said Brent Barkman, Chairman of the National Honey Board. “Margaret has extensive experience in food marketing and a comprehensive understanding of the food industry. I have no doubt that she is the right person to take the helm at the NHB.”

 

In her nearly 25 years in the food industry, Margaret has held a variety of leadership positions, including Vice President of Marketing for Raley’s Supermarkets and Vice President of Shopper Marketing for a national advertising agency. She has a proven track record for successfully driving innovation and growth. Her past clients include Mission Foods, Blue Diamond Almonds and Avocados from Mexico. Margaret holds a Bachelor of Science degree in Design from the University of California Davis, and a Master of Business Administration degree from California State University Sacramento. Her background in food and her commodity board experience make her ideally suited to lead the next phase of the NHB’s growth and success.

 

“I am honored to have been chosen by the Board to lead the NHB into the next exciting era,” said Margaret Lombard. “The NHB is doing some amazing work and is perfectly poised for growth as the trend towards natural ingredients continues to explode. I look forward to working with our Board and our staff in driving growth for the entire industry.”

 

The National Honey Board is an industry-funded agriculture promotion group that works to educate consumers about the benefits and uses for honey and honey products through research, marketing and promotional programs. 

PUBLIC LANDS:

Policy fight looms as agencies treat honeybee -- a 17th-century import -- as exotic invader

Tiffany Stecker, E&E reporter

Published: Tuesday, December 2, 2014

A bitter feud between beekeepers and federal land managers is coming to a head as the Obama administration prepares plans for stemming a steep decline in pollinators.

Under President Obama's June executive order, federal agencies must submit reports to the White House by Dec. 20 defining how they will address insects and animals that spread pollen from plant to plant. The President's Pollinator Task Force, headed by the Agriculture Department and U.S. EPA, will incorporate those reports into a federal strategy on pollinator protection (Greenwire, June 20).

But commercial beekeepers say some land managers are intent on keeping out one of the most important pollinators -- and the only one that makes money while doing so: the European honeybee.

Apis mellifera, which arrived in what's now the United States in the early 17th century, can compete with native bumblebees and transmit pathogens like the deformed wing virus, though the research is still developing on the issue. It also likes to forage on sweet clover, an invasive plant species that allows the bee to produce the popular clover honey.

This rankles the Fish and Wildlife Service, the National Park Service and other agencies whose missions are to protect native species. Their aversion to honeybees, and their foods of choice, has made it difficult for beekeepers to get access to public lands, said Randy Verhoek, president of the American Honey Producers Association.

Access varies from region to region and land manager to land manager, Verhoek said. He hopes the president's memorandum will be favorable to beekeepers when the task force releases its report early next year.

"It seems to be getting worse; it seems to be more regional," he said. "We need a national, federal policy and guidelines; those guidelines need to be passed down to the local agencies, [so] we don't have a whole bunch of individuals making individual decisions."

The issue of access is just as important to beekeepers as the more visible debate over neonicotinoids, insecticides that are linked to declining bee health, Verhoek said.

Honeybees are big business in the United States. Last year's honey production was valued at $317 million by the National Agricultural Statistics Service. In addition, beekeepers carry their hives around the country in the early months of the year to help growers spread pollen in fields and maximize production. Gross revenues from pollination in 2012 were about $655.6 million, according to NASS.

The United States has lost more than 50 percent of its managed honeybee colonies over the past 10 years to a little-understood phenomenon called colony collapse disorder, according to the Pollinator Partnership. Another pollinator, the monarch butterfly, has seen its population decline by 90 percent in recent years.

Loss of forage, parasites like the Varroa mite and pesticides have been linked to colony collapse disorder.

Bees, and their hive owners, are nomadic by nature. Right now, most bees are buzzing around the Gulf Coast states, the Carolinas and Georgia. Another large group spends its winter in California. There are also more bees finding refuge from the cold in indoor facilities in Idaho and Utah.

Come the end of January or February, most of the commercially managed bee hives are trucked over to California's almond groves. After the almond trees bloom, a portion of the hives will stay in California to pollinate other crops. Some move north to Oregon and Washington, while a separate group will travel up the East Coast, pollinating apple trees in New York, blueberries in Maine or pumpkins in Pennsylvania.

After the pollination season, beekeepers bring the hives back to their home base, raise new queens to lead separate colonies and nurse the colonies to health.

Many bees are taken to North Dakota -- the top honey-producing state -- or elsewhere in the Midwest, where they start making the sweet stuff through the summer. This is where sweet clover, the honeybee's preferred food, is found in pastures over thousands of acres.

Inconsistent goals

A summit last month on forage and bee nutrition sought to promote discussion on the availability of blooms for bees to feed on, and bridge the gap between honeybee keepers and public lands.

One panel, titled "Providing Access to Honey Bees on Federally Managed Lands -- Opportunities and Challenges," allowed representatives from the Bureau of Land Management, the Department of Defense, the Fish and Wildlife Service, the Forest Service, and the Park Service to present their preliminary plans for pollinators.

The presentations were "disheartening," Christi Heintz and Meg Ribotto of Project Apis m., a California-based project created to fund and direct research on honeybee health, wrote in a post on the American Beekeeping Federation's website.

"The Department of Defense, manager of huge acreage in the US, was a no-show. The National Park Service, understandably, wants to keep its lands pristine and would only consider 'manipulated' or urban areas as suitable for bees. Urban areas, of course, are not suitable for commercially managed bees. The Bureau of Land Management (BLM) and the Forest Service will consider apiary locations on a case-by-case basis, but 85 percent of BLM offices surveyed didn't know whether or not they even provided apiary permits," they wrote. An apiary is a place where beehives are kept.

Given the Park Service's mandate to protect native wildlife, there's not much wiggle room for expanding habitat for a species that is exotic, albeit a long-standing resident alien. The most likely areas are places like national historical parks -- battlefields, historical homes and other landmarks -- where wildlife is rare.

"I'm looking at a few battlefields, and those battlefields are only a few hundred acres in size," said Elaine Leslie, chief of the Biological Resource Management Division at the Park Service. "I can't imagine more than several hundred acres."

Inconsistency in management goals is an issue, Leslie said, in an echo of the concerns expressed by the Honey Producers Association's Verhoek. Although a national strategy will help, agency policies and enforcement and education will need to come first.

"That is largely what centralized offices such as mine attempt to implement -- not always an easy task," Leslie said in an email.

Fish and Wildlife Service representatives said that some wildlife refuges do allow apiaries, but a refuge's discretion on whether to issue a special-use permit -- for anything from bicycling to backpacking -- rests with refuge management.

A number of policies authorized by the Refuge Administration Act help guide the issuance of special-use permits and allow for consistency in the review process across the refuge system, said Cindy Hall, FWS's national coordinator for integrated pest management.

There are still unknowns on how honeybees and native bees compete, she said, and more research is needed to guide refuge managers.

As for BLM, there are 60 apiary permits throughout the system, said Carol Spurrier, a BLM rangeland ecologist. Most are in California and Arizona.

"It's not a hugely popular or requested activity," Spurrier said.

Typically, BLM lands are at low elevations. The flowering of nectar plants happens around the same time that most commercial honeybees are in California. Many plants on BLM lands have gone to seed by the time bees finish their tour of the almond orchards and other crop fields.

Most of BLM's efforts in the pollinator strategy are likely to come from the planting of native seeds as part of post-fire rehabilitation, a source of pollen for both native pollinators and honeybees.

"If we have more enhancements on the native side, it will be better for managed bees also," Spurrier said.

Is conflict overblown?

Federal lands commitments for beekeeping will likely come out of acres managed by BLM and the Forest Service, areas that have traditionally served both conservation and commercial uses, notably drilling and logging, said Mace Vaughan, co-director of the pollinator program at the Xerces Society, a Portland, Ore.-based nonprofit organization dedicated to protecting wild pollinators.

Overall, Vaughan said, there needs to be an evaluation to avoid competition between natives and European bees.

The Xerces Society's focus on native invertebrates, and their perceived influence in the administration, irritates Verhoek and other honeybee supporters. The group has a "cozy relationship" with USDA's Natural Resources Conservation Service (NRCS), said Verhoek, consulting the agency's policies on pollinators.

NRCS is not a public lands agency. It encourages private landowners, farmers and ranchers, to implement conservation practices. Yet with the guidance of the Xerces Society, it has recommended that landowners plant expensive native seeds over sweet clover, Verhoek said.

NRCS has awarded $865,326 in grants to the Xerces Society since 2006, according to USAspending.gov.

The conflict between beekeepers and native pollinator protection is misleading, said Vaughan, who has a background in beekeeping.

Ninety-five percent of the concerns over native bee health overlap with those of honeybees, he said. While Xerces may not advocate for more public lands access to beekeepers, he said, they share concerns over declining forage, pesticide exposure and working with private landowners.

NRCS at the state level works with state agencies to finalize recommended plant lists to landowners, Vaughan said.

"If the state agencies don't want sweet clover, NRCS is going to respect that," he said.

Xerces promotes diversity in seeds to feed bees, not a rejection of sweet clover, Vaughan added. That means planting native flowers that encourage pollen diversity, which could help buffer the negative effects of pesticide exposure, according to recent research. It also means planting inexpensive covers like buckwheat, canola and alfalfa, species that provide a role similar to that of sweet clover, but without issues of invasiveness.

"We [don't have] an anti-honeybee agenda," Vaughan said. "I think there's significant confusion over that.

 

 

A Gorgeous App for Getting to Know the World’s Bees

05 December 14 by Liz Stinson

Five years ago, Lasioglossum gotham was discovered buzzing around Brooklyn's botanical gardens. This little insect, about the size of a rice grain, is colloquially referred to as the Gotham Bee, though it's far from the only bee in the big city. According to Chris O'Toole, an entomologist at London's Natural History Museum, some 90 species have been discovered around the gardens, which isn't even half the number of bees discovered in New York -- that's closer to 250. And NYC is amateur hour compared to California, where more than 1,800 bee species have been found. And to put that in perspective, more than 4,500 species of bees have been discovered in the United States alone.

The point is, there are many, many different kinds of bees in the world -- at least 20,000 recognised species thus far -- and you probably know only a fraction of them. That's a shame, say Callum Cooper and Ana Tiquia.

Callum, a filmmaker, and Tiquia, a creative producer, are raising money for 1,000 Bees, an interactive app (free on iOS) that provides a in-depth look at, yep, you guessed it, 1,000 bee species. The goal is raise awareness of the biodiversity among bees and shed light on the fact that they're quickly dwindling in numbers.

An app about bees might sound a little dry or a little unsettling, depending on your outlook, but 1,000 Bees is surprisingly engaging. It's a rich visual experience, with images of each bee gathered from research collections around the world. You can swipe through the bees or let them flicker across your screen in an animated film. You can sort by colour, geographic habitat or behaviour and even create animated films based upon parameters you choose. Want to see only red bees indigenous to the American Midwest? No problem. Clicking on a bee takes you to its backstory, where you can learn even more about your new favourite insect. "What we're doing is a make a lot stuff that's available to academics and research scientists available to the greater public and in an accessible form," says O'Toole, a collaborator on the project.

In the past, people haven't been terribly interested in bees. Birds and butterflies? Sure. But bees, unless they're making honey or about to sting, tend to fly under the radar. "Butterflies and dragonflies are very popular because they're big showy insects and people see them all the time," says O'Tool. "But there's lots of interesting behavior going on in people's backyards." Of the 20,000 known species of bees, those showcased in the app are among the most amazing of the bunch. There's Wallace's Giant Mason Bee, an insect with a 2.5-inch wingspan and formidable jaws. Or the optical illusion bee, with its shiny, technicolor abdomen. And yes, the honey bee is in there, too.

You could take a standalone app about bees as proof that public sentiment towards the insect is changing. Bees are no longer considered a pain-inducing nuisance to be swatted at and killed. With a responsibility of pollinating a third of human food production, bees are far too crucial to human survival to go ignored. So take 1,000 Bees as a reminder that we should care what happens to these little insects -- not just the honey bee or the fuzzy bumblebee in your garden, but all 20,000 of the buzzing, pollinating (and yes, stinging) varieties out there.

 

Sign In


Forgot your password?

Haven't registered yet?

Cassie Cox
Executive Secretary
PO Box 435
Mendon, UT 84325
office:281-900-9740
cassie@AHPAnet.com